Use of the Principles of Maximum Entropy and Maximum Relative Entropy for the Determination of Uncertain Parameter Distributions in Engineering Applications

نویسندگان

  • José Luis Muñoz-Cobo
  • Rafael Mendizábal
  • Arturo Miquel
  • Cesar Berna
  • Alberto Escrivá
چکیده

The determination of the probability distribution function (PDF) of uncertain input and model parameters in engineering application codes is an issue of importance for uncertainty quantification methods. One of the approaches that can be used for the PDF determination of input and model parameters is the application of methods based on the maximum entropy principle (MEP) and the maximum relative entropy (MREP). These methods determine the PDF that maximizes the information entropy when only partial information about the parameter distribution is known, such as some moments of the distribution and its support. In addition, this paper shows the application of the MREP to update the PDF when the parameter must fulfill some technical specifications (TS) imposed by the regulations. Three computer programs have been developed: GEDIPA, which provides the parameter PDF using empirical distribution function (EDF) methods; UNTHERCO, which performs the Monte Carlo sampling on the parameter distribution; and DCP, which updates the PDF considering the TS and the MREP. Finally, the paper displays several applications and examples for the determination of the PDF applying the MEP and the MREP, and the influence of several factors on the PDF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Maximum Bayesian Entropy Probability Distribution

In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.

متن کامل

A Note on the Bivariate Maximum Entropy Modeling

Let X=(X1 ,X2 ) be a continuous random vector. Under the assumption that the marginal distributions of X1 and X2 are given, we develop models for vector X when there is partial information about the dependence structure between X1  and X2. The models which are obtained based on well-known Principle of Maximum Entropy are called the maximum entropy (ME) mo...

متن کامل

Frequency Analysis of Maximum Daily Rainfall in various Climates of Iran

    In this research in order to frequency analysis of maximum daily rainfall in various climates of Iran the data of 40 synoptic rain gauges collected in 40 years period i.e., 1973 to 2012 were used. These stations are located in various climates of Iran according to De Martonne climatic classification. At first, input of data to HYFA package was performed. The mentioned package includes seven...

متن کامل

Taylor Expansion for the Entropy Rate of Hidden Markov Chains

We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...

متن کامل

Tsallis Maximum Entropy Lorenz Curves

In this paper, at first we derive a family of maximum Tsallis entropy distributions under optional side conditions on the mean income and the Gini index. Furthermore, corresponding with these distributions a family of Lorenz curves compatible with the optional side conditions is generated. Meanwhile, we show that our results reduce to Shannon entropy as $beta$ tends to one. Finally, by using ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017